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In this paper we study the possible second order Lax operators for all possible (1+1)-dimen-
sional models with Schwarzian forms. If the Schwarzian form of a (1+1)-dimensional model can
be expressed by two known conformal invariants (invariant under the Möbius transformation), the
model has a second order lax pair. The explicit Lax pairs for some (1+1)-dimensional are given.
The conclusions are also extended to some (2+1)-dimensional equations.
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1. Introduction

In the study of a nonlinear mathematical physics
system, the integrablility condition of a pair of linear
problems can offer a nonlinear system. Some types
of special exact solutions of the nonlinear system can
be obtained by means of a pair of linear problems.
The pair of linear equations is called a Lax pair of the
nonlinear system and the nonlinear system is called
Lax integrable or IST (inverse scattering transforma-
tion) integrable if the Lax pair possesses a nontrivial
spectral parameter. Usually, an IST integrable model
also has many other interesting properties such as the
existence of infinitely many conservation laws and
infinitely many symmetries, multi-soliton solutions,
bilinear forms, Schwarzian forms, multi-Hamiltonian
structures, Painlevé property, and so on.

To our knowledge, almost all the known IST inte-
grable (1+1)- and (2+1)-dimensional models can be
transformed to some types of invariant forms which
are invariant under the M̈obius transformation. We
call these types of invariant forms the Schwarzian
forms of the original models because they are usually
expressed by the Schwarzian derivatives. The trun-
cated Painlev́e expansion approach [1; 2] may be one
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of the best ways to find the Schwarzian forms of the
original integrable models.

Our recent studies indicate that the existence of
the Schwarzian forms plays an important role in the
study of integrable systems. The conformal invariance
(invariant under the M̈obius transformation) of the
well-known Schwarzian Korteweg de-Vries (SKdV)
equation is related to the infinitely many symmetries
of the usual KdV equation [3]. The conformal invari-
ant related flow equation of the SKdV is linked with
some types of (1+1)-dimensional and (2+1)-dimen-
sional sinh-Gordon (ShG) equations and Mikhailov-
Dodd-Bullough (MDB) equations [4]. In addition, by
means of the Schwarzian forms of many known inte-
grable models one can discover some other integrable
properties like the B̈acklund transformations and Lax
pairs [1]. In [5], one of the present authors (Lou) pro-
posed that starting from a conformal invariant form
may be one of the effective ways to find integrable
models particularly in higher dimensions. Some types
of quite general Schwarzian equations are Painlevé in-
tegrable. In [6], Conte’s conformal invariant Painlevé
analysis [7] has been extended to obtain high dimen-
sional Painlev́e integrable Schwarzian equations sys-
tematically, and some types of physically important
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high dimensional nonintegrable models can be solved
approximately via some high dimensional Painlevé
integrable Schwarzian equations [8].

Now an important question is what kind of
Schwarzian equations are related to some Lax inte-
grable models? To answer this question generally in
arbitrary dimensions is quite difficult. So the models
discussed in this paper are mainly focused on (1+1)-
dimensional cases.

In the next section, we prove that for any (1+1)-di-
mensional Schwarzian model (which is described by
two conformal invariants) there is a second order Lax
pair. Various concrete physically significant examples
are listed in Section 3. Section 4 is devoted to dis-
cussing some special extensions in high dimensions.
The possibility to introduce some nontrivial spectral
parameters in Lax pairs is discussed in Section 5. The
last section is a short summary and discussion.

2. A Second Order (1+1)-dimensional Lax Pair
Linked with an Arbitrary Schwarzian Form

In (1+1)-dimensions, the known independent con-
formal invariants are

p1 �
�
t

�
x

; p2 � f�; xg �
�
xxx

�
x

�
3
2
�

2
xx

�
2
x

; (1)

where� is a function offx; tg, the subscripts are
usual derivatives whilef�; xg is the Schwarzian
derivative. As in [5; 6; 8], we say a quantity is a
conformal invariant if it is invariant under the M̈obius
transformation

�!
a� + b
c� + d

; ad 6= bc: (2)

From (1) we can write down a general (1+1)-dimen-
sional conformal invariant Schwarzian equation

F (x; t; p
i
; p

ix
; p

it
; p

ixx
; :::(i = 1;2)) (3)

� F (p1; p2) = 0;

whereF is an arbitrary function ofx; t; p
i

and any
order of derivatives and even integrations ofp

i
with

respect tox andt. According to the idea in [5], (3)
(or many of (3)) may be integrable. It is quite easy
to check the Painlev́e integrability of (3) by using the
method given in [5; 6], whenF is a polynomial func-
tion ofp

i
and the derivatives ofp

i
. But it is rather hard

for a quite general form of the functionF . Fortunately,
we can find its relevant forms with Lax pair(s). To re-
alize this idea, we consider the second order Lax pair

�
 
xx

= u 
x

+ v ;

 
t

= u1 x + v1 ;
(4)

whereu; u1; v; andv1 are undetermined functions.
To link the Lax pair (4) with the Schwarzian equation
(3), we suppose that 1,  2 are two solutions of (4)
and� of (3) is linked to 1 and 2 by

� =
 1

 2
: (5)

Now by substituting (5) with (4) into (3) directly, we
know that, if the functionsu; v andu1 are linked by

F (P1; P2) = 0 (6)

with

P1 = u1; P2 = u
x
�

1
2
u

2
� 2v; (7)

then the corresponding nonlinear equation system for
the fieldsu; v; u1 andv1 has a Lax pair (4), and the
fieldsu; v; u1 andv1 are linked to the field� by the
non-auto-B̈acklund transformation

p
i

= P
i
; (i = 1; 2): (8)

Finally, the evolution equation system is obtained
straightforwardly by calculating the compatibility
condition of (4),

 
xxt

=  
txx
: (9)

The result reads

v
t

= v1xx + 2vu1x + u1vx � uv1x; (10)

u
t

= u1xx + 2v1x + (uu1)
x

(11)

with the constraint (6). In (6), (10) and (11) one of
the four functionsu; u1; v; andv1 remains free. For
simplicity we take

u = 0; v1 = �
1
2
u1x: (12)

Due to the simplification (12), the final evolution
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equation related to the Schwarzian form (3) has the
form of

v
t

= �
1
2
u1xxx + 2vu1x + u1vx (13)

with (6) for u = 0. Simultaneously, the Lax pair is
simplified to

(
L � (∂2

x
� v) = 0;

 
t

= M � (u1∂
x
�

1
2
u1x) :

(14)

What should be emphasized again is that the Lax
operator given in (14) is only a second order operator.

For the sake of showing the results more concretely,
we discuss some special physically significant models
in the following section.

3. Special Examples

From suitable selections ofF � F (p1; p2) in (3),
various interesting examples are obtained, based on
the general theory given in the last section.

Example 1. KdV equation.

The Schwarzian KdV equation has the simple form

FKdV(p
i
) = p1 + p2 = 0: (15)

According to (6) withu = 0, we know that the relation
between the functionsv andu1 is simply given by

v =
1
2
u1: (16)

Substituting (16) into (14), we reobtain the well
known Lax pair

(
 
xx
�

1
2
u1 = 0;

 
t

= u1 x �
1
2
u1x ;

(17)

for the KdV equation

u1t = 3u1u1x � u1xxx: (18)

Example 2. Harry-Dym (HD) equation.

For the HD equation, the Schwarzian form reads

F
HD

(p
i
) = p2

1�
2
p2

= 0; (19)

which leads to the relation

v = �
1
u

2
1

: (20)

From (14) and (20) we get the known Lax pair

(
 
xx
�

1
u

2
1

 = 0;

 
t

= u1 x �
1
2
u1x 

(21)

for the HD equation

u1t =
1
4
u

3
1u1xxx: (22)

Example 3. Modified Boussinesq equation and
Boussinesq equation.

The Schwarzian form of the modified Boussinesq
(MBQ) equation (and the Boussinesq equation) is

FMBQ(p
i
) = p2x + 3p1p1x + 3p1t = 0: (23)

Using (23) and (6), we have

v =
3
4
u

2
1 +

3
2

Z
u1tdx: (24)

Substituting (24) into (14) yields a Lax pair

(
 
xx
�

�3
4
u

2
1 +

3
2

Z
u1tdx

�
 = 0;

 
t

= u1 x �
1
2
u1x :

(25)

The related compatibility condition of (25) leads to

3u2
1u1x + 3u1x

Z
u1tdx�

1
2
u1xxx (26)

�
3
2

Z
u1ttdx = 0:

Equation (26) is called the modified Boussinesq equa-
tion because it is linked with the known Boussinesq
equation

u
tt

+
�

3u2 +
1
3
u
xx

�
xx

= 0 (27)
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by the Miura transformation

u =
1
3

(�u1x � u

2
1�

Z
u1tdx): (28)

Example 4. Generalized fifth order KdV (FOKdV)
equation.

The generalized fifth order Schwartzian KdV equa-
tion has the form

FFOKdV(p
i
) = p1� a1p2xx � a2p

2
2 = 0; (29)

wherea1 anda2 are arbitrary constants. From (29)
and (6) we have

u1 = �2a1vxx + 4a2v
2
: (30)

Substituting (30) into (14), we get

8><
>:

 
xx
� v = 0;

 
t

= (a1vxxx � 4a2vvx) 

� 2(a1vxx � 2a2v
2) 

x
:

(31)

The related compatibility condition of (31) generates
the generalized FOKdV equation

v
t
� a1vxxxxx + 4(a1 + a2)vv

xxx
(32)

+ 2(a1 + 6a2)v
x
v
xx
� 20a2v

2
v
x

= 0:

Some well-known fifth order integrable partial differ-
ential equations listed in [2] are just the special cases
of (32). The usual FOKdV equation is related to (32)
when

a1 = 1; a2 =
3
2
: (33)

The Caudry-Dodd-Gibbon-Sawada-Kortera equation
is related to (32) if

a1 = 1; a2 =
1
4
; (34)

while the parametersa1 anda2 for the Kaup-Kuper-
shmidt equation read

a1 = 1; a2 = 4: (35)

Example 5. Generalized seventh order KdV
(SOKdV) equation.

The generalized seventh order Schwartzian KdV
equation is

FSOKdV(p
i
) = p1�p2xxxx��p2p2xx��p

2
2x��p

3
2=0;

(36)

where�, � and� are arbitrary constants. Using (36)
and (6), we obtain

u1 = �2v
xxxx

+ 4�vv
xx

+ 4�v2
x
� 8�v3

: (37)

Substituting (37) into (14), we get8>>>><
>>>>:

 
xx
� v = 0;

 
t

= (v
xxxxx

� 2(� + 2�)v
x
v
xx

� 2�vv
xxx

+ 12�v2
v
x
) 

+ (�2v
xxxx

+ 4�vv
xx

+ 4�v2
x
� 8�v3) 

x
:

(38)

The related compatibility condition of (38) gives the
generalized SOKdV equation

v
t
� v

xxxxxxx
+ 2(� + 2)vv

xxxxx
(39)

+ 2(1 + 2� + 3�)v
x
v
xxxx

�(16� + 12� + 72�)vv
x
v
xx

+ (8�v
xx
� 8�v2 + 4�v

xx
� 12�v2)v

xxx

� (24� + 4�)v3
x

+ 56�v3
v
x

= 0:

The usual SOKdV equation is related to (39) for

� = 5; � =
5
2
; � =

5
2
: (40)

The seventh order CDGSK equation corresponds to
(39) if

� = 12; � = 6; � =
32
3
: (41)

The seventh order KK equation is obtained if

� =
3
2
; � =

3
4
; � =

1
6
: (42)

Example 6. Riccati equation (RE).

If the Schwarzian form (3) is taken as

FRE(p
i
) � p2p

2
1 + p1p1xx + p1xt (43)

�
1
2
p

2
1x � p1xp1tp

�1
1 = 0;
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then we have

v =
1
2
u

�1
1 u1xx +

1
4
u

�2
1 (2u1xt � u

2
1x) (44)

�
1
2
u

�3
1 u1tu1x:

Consequently, the evolution equation ofu1 reads

3u1u1tu1xt�u
2
1u1xtt+u1u1xu1tt�3u1xu

2
1t = 0; (45)

while the related Lax pair is

8>>>>><
>>>>>:

 
xx
�

�1
2
u

�1
1 u1xx +

1
4
u

�2
1 (2u1xt � u

2
1x)

�
1
2
u

�3
1 u1tu1x

�
 = 0;

 
t

=
�
�

1
2
u1x + �1

�
 + u1 x:

(46)

Actually (45) is equivalent to a trivial linearizable
Riccati equation

w
t

= w2 + f1(x) (47)

under the transformation

u1 = exp
�

2
Z
wdt

�
; (48)

where f1(x) is an arbitrary function ofx. It is
worth emphasizing again that the well known (1+1)-
dimensional ShG model and MDB model are just the
non-invertible Miura type deformation of the Riccati
equation [4].

Except for the general form of the FOKdV equa-
tion, the SOKdV equations and the expression (43),
all the other special examples mentioned in this sec-
tion can be found in [2].

4. Special Extensions in Higher Dimensions

From Sect. 2, we know that the key procedure to
obtain a Lax pair from the general conformal invariant
form (3) is to find a suitable Lax form ansatz (like (4))
and a suitable relation ansatz (like (5)) between the
field of the Schwarzian form and the spectral func-
tion such that the conformal invariants (p

i
) becomes

spectral function independent variables (P
i
) (see (8)).

To extend this idea to higher dimensions is rather
difficult. We hope to solve this problem in our future

studies. In this section we offer some special exten-
sions with the same Lax pair form (4).

If all the fields are functions of not onlyfx; tg but
alsofy; z; :::; g, then all the formal theory is still valid
as long as the independent conformal invariants in (6)
is still restricted asp1 andp2, while the functionalF of
(6) also includes some derivatives and/or integrations
of p1 and p2 with respect to other space variables
y; z; ::: etc. Here we list only two special examples:

Example 7. (2+1)-dimensional KdV type breaking
soliton equation.

The concept of breaking soliton equations has been
developed in [9] and [10] by extending the usual
constant spectral problem to a non-constant spec-
tral problem. Various interesting properties of the
breaking soliton equations have been revealed by
many authors. For instance, infinitely many symme-
tries of some breaking soliton equations are given in
[11; 12]. In [13], it has been pointed out that every
(1+1)-dimensional integrable model can be extended
to some higher dimensional breaking soliton equa-
tions by means of its strong symmetries. Yu and Toda
[14] has derived the Schwarzian form of the (2+1)-di-
mensional KdV type breaking soliton equation which
reads

F2dSKdV� p1 +
Z
p2ydx = 0: (49)

Then from (6) and (49), we have

u1 = 2
Z
v
y
dx: (50)

Substituting (49) into (14), we obtain a Lax pair

8<
:

 
xx

= v ;

 
t

= 2
Z
v
y
dx 

x
� (v

y
� �1) ;

(51)

for the (2+1)-dimensional KdV type breaking soliton
equation

v
t

= �v
xxy

+ 4vv
y

+ 2v
x

Z
v
y
dx � �v

y
; (52)

where� is just the strong symmetry of the (1+1)-di-
mensional KdV equation.
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Example 8. (2+1)-dimensional fifth order equation.

If making the replacement

p2 !

Z
p2ydx (53)

to some examples listed in the last section, we can
obtain some special types of their (2+1)-dimensio-
nal extensions. Example 7 is rightly obtained from
the (1+1)-dimensional KdV equation by using this
replacement.

A generalization of the fifth order Schwarzian
equation (29) reads

p1 = b1p2xy + b2pxx + c1

�Z
p2ydx

�2
(54)

+ c2p2

Z
p2ydx + c3p

2
2;

whereb1; b2; c1; c2 andc3 are arbitrary constants.
From (6) and (54) we know that

u1 = �2b1vxy � 2b2vxx + 4c1

�Z
v
y
dx
�2

(55)

+ 4c2v

�Z
v
y
dx
�

+ 4c3v
2
;

and the related Lax pair becomes8>>>>>>>>>><
>>>>>>>>>>:

 
xx

= v ;

 
t

=
�

4c1
� R

v
y
dx
�2

+ 4c2v
� R

v
y
dx
�

+ 4c3v
2

�2b1vxy � 2b2vxx

�
 
x

+
�
�1� 2v

x

�
2c3v + c2

R
v
y
dx
�

�2v
y

�
2c1

R
v
y
dx + c2v

�
+ b1vxxy + b2vxxx

�
 :

The corresponding evolution equation for the fieldv is

v
t

= b1vxxxxy + b2vxxxxx

+ 2v
x
(4c2v

2
� 6c1vxy � 3c2vxx + 8c1v

R
v
y
dx)

�2(c2v + 2b1v + 2c1
R
v
y
dx)v

xxy

�2(2c3v + 2b2v + c2
R
v
y
dx)v

xxx

+ 2v
x

�
10c3v

2 + 2c1(
R
v
y
dx)2 + 6c2v

R
v
y
dx

� (b2 + 6c3)v
xx
� (b1 + 3c2)v

xy

�
:

(56)

It is obvious that wheny = x and/orv
y

= 0, the (2+1)-
dimensional fifth order equation (56) will be reduced
back to the (1+1)-dimensional FOKdV equation (32)
for b1 + b2 = a1 andc1 + c2 + c3 = a2.

5. On Spectral Parameters

In the last two sections, we have omitted the spec-
tral parameter(s). In order to introduce the possible
spectral parameter(s) into the Lax pairs, one can use
the symmetry transformations of the original non-
linear models. In some cases, to find a symmetry
transformation such that a nontrivial parameter can
be included in the Lax pair (4) is quite easy. For in-
stance, it is well known that the KdV equation (18) is
invariant under the Galilei transformation

u1 ! u1(x + 3�t; t) + � � u1(x0; t) + �: (57)

In (57) we use the parameterx+3�t = x0 for simplicity
in other formulas especially in the Lax pair (see (58)).
Substituting (57) into (17) yields the usual Lax pair
of the KdV equation with the spectral parameter�:

(
 
xx
�

1
2

(u1 + �) = 0;

 
t

= (u1� 2�) 
x
�

1
2
u1x ;

(58)

wherex0 has been rewritten asx.
However, for some other models, to add the pa-

rameters to (4) can not be easily realized. In those
cases, the spectral parameters have to be included
in (4) in very complicated ways. For example, as for
the CDGSK equation ((32) with (34)), we failed to in-
clude a nontrivial spectral parameter by using its point
Lie symmetries. Nevertheless, if we use the higher
order symmetries and/or nonlocal symmetries of the
model we can include some nontrivial parameters in
(31) with (34). For instance, still for the CDGSK
equation, if 1 is a special solution of (31) with (34),
one can prove that

u

0 = u� 6
�(� 2

1 � � 1xp� 6 1x)
(�p + 6)2

; (59)

with

p
x

=  1 (60)

is also a solution of the CDGSK equation. By substi-
tuting (59) into (31), we obtain a second order Lax
pair (P = 6 +�p)
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>>>>>>>>>>>>>>>>>>:

 
xx

= �
�
u� 6

�(� 2
1 � � 1xp� 6 1x)

(�p + 6)2

�
 ;

 
t

=
�6�(u

x
 1)x

P

� 12
 1�

2(3u 1x + 2u
x
 1)

P
2

+ 72�3
 1
u 

2
1 �  

2
1x

P
3

� u
xxx

� ww
x

�36�4
 

3
1
2� 2

1 � 5 1xP

P
5

�
 

+
�

36�2
u

 
2
1

P
2

+ 2u
xx

+ u2
� 12� 1x

u
x

P

�36�4 
4
1

P
4

+ 72�3
 

2
1
 1x

P
3

�
 
x

(61)

for the CDGSK model with 1 being a solution
of (31). Obviously, the Lax pair (61) is too compli-
cated for real applications. In order to eliminate 1

from (61), one has to heighten the order of the Lax
pair. Actually, the simplest Lax pairs for the CDGSK
equation, the KK equation and the Boussinesq equa-
tion are of order three [15]. Though the second order
Lax pairs may be useless to get exact solutions by
inverse scattering transformation for the fifth order
(and seventh order) CDGSK and KK equations, they
are still useful to find some other types of interest-
ing properties like the nonlocal symmetries [16] and
the exact solutions related to the nonlocal symme-
tries [17].

In many other cases, one can not introduce non-
trivial spectral parameter(s) to the Lax pair (14) at
all. The (1+1)-dimensional Lax pairs without non-
trivial spectral parameter(s) are called fake Lax pairs.
In [18], Calogero and Nucci have pointed out that
any (1+1)-dimensional nonlinear equations with one
conservation law possess fake Lax pairs. For the fake
Lax pair(s), the trivial parameters can be eliminated
by proper gauge [19].

6. Summary and Discussions

In summary, every (1+1)-dimensional equation
which has a Schwarzian form seems to possess a
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second order Lax pair. In this paper we have proven
this conclusion when the Schwarzian form is an arbi-
trary functional of two conformal invariants and their
derivatives and integrates.

Usually, the Lax operators for various integrable
models (except for the KdV hierarchy) are taken as
higher order operators. Because the order of the Lax
pair operators for some models has been lowered, the
spectral parameter has disappeared. In order to re-
cover some types of nontrivial spectral parameters,
we have to use the symmetries of the original nonlin-
ear equations, and then the spectral parameter(s) will
appear in the second order Lax operator in some com-
plicated ways. As is known, many interesting proper-
ties of some special models from the Lax pairs without
spectral parameters have been successfully obtained
[20, 21]. For instance, in [20, 16], infinitely many
nonlocal symmetries of the KdV equation, HD equa-
tion, CDGSK equation and the KK equation have
been derived from the spectral parameter indepen-
dent Lax pairs. Therefore, how to obtain some other
integrable properties from the Lax pairs listed here
for general or special models is worthy of further
study though the spectral parameters are not included
explicitly in them.

In addition, The conclusion for the general (1+1)-
dimensional Schwarzian equations can also be ex-
tended to some special types of (2+1)-dimensional
models, like the breaking soliton equations. However,
how to extend the method and the conclusions to gen-
eral (2+1)-dimensions or to even higher dimensions
is still open.
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