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In this paper we study the possible second order Lax operators for all possible (1+1)-dimen-
sional models with Schwarzian forms. If the Schwarzian form of a (1+1)-dimensional model can
be expressed by two known conformal invariants (invariant under dhéusitransformation), the
model has a second order lax pair. The explicit Lax pairs for some (1+1)-dimensional are given.
The conclusions are also extended to some (2+1)-dimensional equations.
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1. Introduction of the best ways to find the Schwarzian forms of the
original integrable models.

In the study of a nonlinear mathematical physics Our recent studies indicate that the existence of
system, the integrablility condition of a pair of linearthe Schwarzian forms plays an important role in the
problems can offer a nonlinear system. Some typesudy of integrable systems. The conformal invariance
of special exact solutions of the nonlinear system cdinvariant under the Kbius transformation) of the
be obtained by means of a pair of linear problemsvell-known Schwarzian Korteweg de-Vries (SKdV)
The pair of linear equations is called a Lax pair of thequation is related to the infinitely many symmetries
nonlinear system and the nonlinear system is called the usual KdV equation [3]. The conformal invari-
Lax integrable or IST (inverse scattering transformaant related flow equation of the SKdV is linked with
tion) integrable if the Lax pair possesses a nontriviglome types of (1+1)-dimensional and (2+1)-dimen-
spectral parameter. Usually, an IST integrable modsional sinh-Gordon (ShG) equations and Mikhailov-
also has many other interesting properties such as thedd-Bullough (MDB) equations [4]. In addition, by
existence of infinitely many conservation laws aneéheans of the Schwarzian forms of many known inte-
infinitely many symmetries, multi-soliton solutions,grable models one can discover some other integrable
bilinear forms, Schwarzian forms, multi-Hamiltoniarproperties like the Bcklund transformations and Lax
structures, Painlévproperty, and so on. pairs [1]. In [5], one of the present authors (Lou) pro-

To our knowledge, almost all the known IST inteposed that starting from a conformal invariant form
grable (1+1)- and (2+1)-dimensional models can bmay be one of the effective ways to find integrable
transformed to some types of invariant forms whicimodels particularly in higher dimensions. Some types
are invariant under the &bius transformation. We of quite general Schwarzian equations are Paniev
call these types of invariant forms the Schwarziategrable. In [6], Conte’s conformal invariant Pairéev
forms of the original models because they are usual@nalysis [7] has been extended to obtain high dimen-
expressed by the Schwarzian derivatives. The trugsional Painleg integrable Schwarzian equations sys-
cated Painle& expansion approach,[2] may be one tematically, and some types of physically important

0932-0784 / 02 / 0900-0737 $ 06®0Verlag der Zeitschriftiir Naturforschung, @ibingen- www.znaturforsch.com



738 S.-y. Louet al. - Second Order Lax Pairs of NLPDESs with Schwarzian Forms

high dimensional nonintegrable models can be solvddr a quite general form of the functidn. Fortunately,

approximately via some high dimensional Pai@evwe can find its relevant forms with Lax pair(s). To re-

integrable Schwarzian equations [8]. alize this idea, we consider the second order Lax pair
Now an important question is what kind of

Schwarzian equations are related to some Lax inte- Vaz = Uy + 0,

grable models? To answer this question generally in { e = Uty + vyt

arbitrary dimensions is quite difficult. So the models £T e T

discussed in this paper are mainly focused on (1+W\herey, u;, v, andv; are undetermined functions.

dimensional cases. To link the Lax pair (4) with the Schwarzian equation

In the next section, we prove that for any (1+1)—d|(3), we suppose that, v, are two solutions of (4)
mensional Schwarzian model (which is described bé(ndqs of (3) is linked toy; andw, by

two conformal invariants) there is a second order Lax

pair. Various concrete physically significant examples 1

are listed in Section 3. Section 4 is devoted to dis- ¢ = Vs (%)
cussing some special extensions in high dimensions.

The possibility to introduce some nontrivial spectraNow by substituting (5) with (4) into (3) directly, we
parameters in Lax pairs is discussed in Section 5. Tkaow that, if the functions, » andu, are linked by
last section is a short summary and discussion.

(4)

F(Py, P5)=0 (6)
2. A Second Order (1+1)-dimensional Lax Pair with
Linked with an Arbitrary Schwarzian Form
— — 1 2
In (1+1)-dimensions, the known independent con- Pr=ua, Po =g = Su” = 2u, (7)

formal invariants are _ _ _
then the corresponding nonlinear equation system for

_ v L Praa 3¢§I the fieldsu, v, w3 andv; has a Lax pair (4), and the

n=m e ={oel =0 - o fieldsu, v, w3 andv; are linked to the field by the
non-auto-Bicklund transformation

where ¢ is a function of{z, t}, the subscripts are

usual derivatives whilg{¢; =} is the Schwarzian p; =P, (=1 2). (8)

derivative. As in [5 6, 8], we say a quantity is a

conformal invariant if it is invariant under thedius ~ Finally, the evolution equation system is obtained

transformation straightforwardly by calculating the compatibility
condition of (4),

Pt

(1)

ap+b
— —c¢ +d ad 7/bc. (2) wzzt - ¢tzm' (9)

From (1) we can write down a general (1+1)-dimenfhe result reads
sional conformal invariant Schwarzian equation

¢

, Vp = Vipp + 20U1e + ULV, — UV, (10)
F(xatapivpizvpitvpizzv---(7/ = 17 2)) (3)

= F(ps, p2) = 0 e = e * 201 (i) ()

with the constraint (6). In (6), (10) and (11) one of
the four functions:, u;, v, andv, remains free. For
simplicity we take

whereF' is an arbitrary function of, ¢, p; and any
order of derivatives and even integrationsppfwvith
respect tar andt. According to the idea in [5], (3)
(or many of (3)) may be integrable. It is quite easy 1

to check the Painlévintegrability of (3) by using the u=0 v = —Fug,. (12)
method givenin [5 6], whenF' is a polynomial func-

tion of p; and the derivatives gf;. Butitis rather hard Due to the simplification (12), the final evolution
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equation related to the Schwarzian form (3) has thehich leads to the relation

form of 1
v = -5 (20)

vy = —Eulmm + 2vuq, + uqv, (13) U

with (6) for « = 0. Simultaneously, the Lax pair is From (14) and (20) we get the known Lax pair

simplified to )
2 Yz — _2¢ = 0,
L =(0, —v)p =0, ug 1 (22)
(14) = ure — Sus
{ Uy = Mtp = (10, — %uh)w. Y = uae — SuL

. . for the HD equation
What should be emphasized again is that the Lax

operator given in (14) is only a second order operator. 1,
For the sake of showing the results more concretely, vt = 21wz (22)
we discuss some special physically significant models

in the following section. . . .
g Example 3. Modified Boussinesq equation and

3. Special Examples Boussinesq equation.

The Schwarzian form of the modified Boussinesq

From suitable selections df = F(p1, p2) in (3), (MBQ) equation (and the Boussinesq equation) is
various interesting examples are obtained, based on

the general theory given in the last section. Fuso(p:) = pax + 3p1p1a + 3p1, = 0. (23)
Example 1. KdV equation.

) ) ) Using (23) and (6), we have
The Schwarzian KdV equation has the simple form

3 3
Feov(p) =p1+12 =0, a5 o=+ [mde @4

According to (6) withu = 0, we know that the relation o _ _ _
between the functionsandu is simply given by ~ Substituting (24) into (14) yields a Lax pair

_1 3,.3
b=t (16) { ve = (Gud+5 [mada)u =0 o5

Substituting (16) into (14), we reobtain the well Uy = ugth, — }uh,/,_
known Lax pair 2

The related compatibility condition of (25) leads to

1
wms - Eulw = 07
1 (17) ) 1
Py = u11/Jz — Eulz¢7 :."YU/]_’U/l/ch + 3u1, /’U,]_tdl‘ — Eulzm (26)
for the KdV equation 3
- = Uj_ttdl' =0.
U = 3“1’“/1:5 — Ulzae- (18)

_ Equation (26) is called the modified Boussinesq equa-
Example 2. Harry-Dym (HD) equation. tion because it is linked with the known Boussinesq

For the HD equation, the Schwarzian form readseduation

2 1
_ .2 _
Frp(p:) =p1 — p_z =0, (19) Uy + (3u2 + :—%um)m =0 (27)
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by the Miura transformation Example 5. Generalized seventh order KdV
(SOKdV) equation.
w = }(iuh —u?— /ulth)- (28) The generalized seventh order Schwartzian KdV
3 equation is

) = — — j— 2 — 3:
Example 4. Generalized fifth order KdV (FOKdV) Fsokav(pi) = p1=P2eace = P2P2ee = Fp2: = AP2=0,
equation. (36)

The generalized fifth order Schwartzian KdV equawherea’ f and are arbitrary constants. Using (36)

tion has the form and (6), we obtain

" UL = —2pp00 T 4VV,, + 4ﬂv§ —8\S. (37)
Frokav(pi) = p1 — a1p2.. — az2p5 =0,  (29)
Substituting (37) into (14), we get
wherea; anda, are arbitrary constants. From (29)
and (6) we have Yew — v =0,

wt = (vzzzzz - 2(0( + zﬂ)vxvzx

w1 = 2010z, + dagv”. (30) — 2000y, + 12020, )0 (39)
Substituting (30) into (14), we get + (= 204000 + 400V, + 4502 — BAV)Y,.
B The related compatibility condition of (38) gives the
Yoz — v =0, generalized SOKdV equation
wt = (al'Uccccx - 4a2vvz)¢ (31) Vi — Vpowwres F 2(a + Z)Uvzzzzz (39)

— 2(a1vp0 — 2a20°)0),.
+2(1 + 23 + 30)0, Vppee— (1668 + 1200 + 72\) 00,0y,
The related compatibility condition of (31) generates
the generalized FOKdV equation + (8avze — 8av® + 4By, — 12004z,

— (24) + 48)03 + 56\0%0, = 0.
The usual SOKdV equation is related to (39) for

5 5
a=5 ==, A=2. (40)
Some well-known fifth order integrable partial differ- 2 2
ential equations listed in [2] are just the special cas@$ie seventh order CDGSK equation corresponds to

of (32). The usual FOKdV equation is related to (3239) if

V¢ — Q1Vzzzze T 4(@1 + (LZ)vvzzz (32)

+2(a1 + 6a2)v, Ve — 20a20%v, = 0.

when
32
a=12 =6 A= —. (41)
=1 a =§ (33) 3
=5 ae=y The seventh order KK equation is obtained if
The Caudry-Dodd-Gibbon-Sawada-Kortera equation o= 3 g= 3 \ = 1 (42)
is related to (32) if T2 T "6
a1=1 ap= %7 (34) Example 6. Riccati equation (RE).
If the Schwarzian form (3) is taken as
while the parameters; anda, for the Kaup-Kuper-

1 2 -1 _
a1 = 17 az = 4. (35) - Eplz — DizP1tP1 = 07
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then we have studies. In this section we offer some special exten-
sions with the same Lax pair form (4).
v= %u;lulm + %ugz(zulwt —u?) (44) I all the fields are functions of not only, ¢} but
also{y, z, ..., }, thenallthe formal theory is still valid
1 5 as long as the independent conformal invariants in (6)
- 5“1 U1 Uiz is still restricted ag; andp,, while the functionaF’ of
(6) also includes some derivatives and/or integrations
Consequently, the evolution equatiomafreads of p; and p, with respect to other space variables

Y, z, ... etc. Here we list only two special examples:

3 z_2z+ T _3z2:0745
Hata e T e L T T S (45) Example 7. (2+1)-dimensional KdV type breaking

while the related Lax pair is soliton equation.
1 1 The concept of breaking soliton equations has been
Vew — (EUIlmm + ZUIZ(ZUW —uf,) developed in [9] and [10] by extending the usual

1, constant spectral problem to a non-constant spec-
- Eul_ m#m)tb =0, (46) tral problem. Various interesting properties of the
1 breaking soliton equations have been revealed by

Py = ( — oLt )\1)"/) + Uty many authors. For instance, infinitely many symme-
tries of some breaking soliton equations are given in

Actually (45) is equivalent to a trivial linearizable[11, 12]. In [13], it has been pointed out that every

Riccati equation (1+1)-dimensional integrable model can be extended
to some higher dimensional breaking soliton equa-
w, = w? + fi(z) (47) tions by means of its strong symmetries. Yu and Toda
[14] has derived the Schwarzian form of the (2+1)-di-
under the transformation mensional KdV type breaking soliton equation which
reads
uy = exp(Z/wdt), (48)
Fagskav = p1+ /szdfv =0. (49)
where fi(z) is an arbitrary function ofz. It is

worth emphasizing again that the well known (1+1)
dimensional ShG model and MDB model are just th
non-invertible Miura type deformation of the Riccati
equation [4]. up = 2/vydx. (50)
Except for the general form of the FOKdV equa-

tion, the SOKdV equations and the expression (43§ubstituting (49) into (14), we obtain a Lax pair
all the other special examples mentioned in this sec- '
tion can be found in [2].

Zhen from (6) and (49), we have

Yoz = VY,
4. Special Extensionsin Higher Dimensions by = 2/1} e, — (0, — A (51)
Yy T Yy ?

From Sect. 2, we know that the key procedure to
obtain a Lax pair from the general conformal invariarfior the (2+1)-dimensional KdV type breaking soliton
form (3) is to find a suitable Lax form ansatz (like (4))equation
and a suitable relation ansatz (like (5)) between the
field of the Schwarzian form and the spectral func-
tion such that the conformal invarianis ) becomes
spectral function independent variablé})((see (8)).

To extend this idea to higher dimensions is rathevhered is just the strong symmetry of the (1+1)-di-
difficult. We hope to solve this problem in our futuremensional KdV equation.

Ut = —VUzgy + 4UUy +2v, /Uydl‘ = vay, (52)
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Example 8. (2+1)-dimensional fifth order equation. Itis obviousthatwhep = x and/or, = 0, the (2+1)-
dimensional fifth order equation (56) will be reduced
back to the (1+1)-dimensional FOKdV equation (32)
for by + b, = aq andeq + ¢ + ¢3 = ap.

If making the replacement

p2 — / p2ydz (53)
5. On Spectral Parameters
to some examples listed in the last section, we can

obtain some special types of their (2+1)-dimensiq- In the last two sections, we have omitted the spec-
1€ Sp ypes ot ; Yral parameter(s). In order to introduce the possible
nal extensions. Example 7 is rightly obtained from

: ; . . . spectral parameter(s) into the Lax pairs, one can use
:Zglz(i;i?:::tmensmnal KdV equation by using thI%lhe symmetry transformations of thg original non-
A generalization of the fifth order Schwarzia linear mode_;ls. In some cases, to find a symmetry
equation (29) reads r}rarjsformatlc_m such that a nontr|V|qI parameter can
be included in the Lax pair (4) is quite easy. For in-
2 stance, it is well known that the KdV equation (18) is
P1 = b1p2ey + bopes + 01( / p2yd l‘) (54)  invariant under the Galilei transformation

.\ / ) ug — ug(z + 3\, 1) + X = uy (2, t) + \. (57)
cop2 | p2yda + c3p3,

In (57) we use the parametet3\t = 2’ for simplicity
in other formulas especially in the Lax pair (see (58)).
Substituting (57) into (17) yields the usual Lax pair
of the KdV equation with the spectral parameier

whereby, by, c1, co andes are arbitrary constants.
From (6) and (54) we know that

2
=y~ Dves +der( fr,) 69 Ve = 31+ ) =0
{ ) (58)
+ 4czv(/vydx) + 4egv?, Ve = (ug = 200 — Susat,

i wherez’ has been rewritten as
and the related Lax pair becomes However, for some other models, to add the pa-
S rameters to (4) can not be easily realized. In those

vz ) cases, the spectral parameters have to be included
0 = (4c1(fvydx)2 +dego( [v,dz) +der? in (4) in very complicated ways. For example, as for
the CDGSK equation ((32) with (34)), we failed to in-

— 2b1v,, — 2bzvm)% clude a nontrivial spectral parameter by using its point

Lie symmetries. Nevertheless, if we use the higher

+ ()\1 A (263v +cp [v,d I‘) order symmetries and/or nonlocal symmetries of the
model we can include some nontrivial parameters in

| =20, (201 [ 0, + c20) +baveay +b2vece )U. (31) with (34). For instance, still for the CDGSK

i . . i equation, ify»; is a special solution of (31) with (34),
The corresponding evolution equation forthe fielsl  one can prove that

Uy = bl”xwxwy + bZchvxxz

w=u—6 , 59
+ 20, (4cpv? — 610,y — 3c20,, + 81 [v,d ) (\p + 6Y (59)
— 2(cov + 2bgv + 2¢1 [0, d2)v,yy with
— 2(2c30 + 2bov + ¢ [0, d )V, (56) Pe = U1 (60)

+ 2v, (1003’1)2 + 2¢1(f v, dz)? + 6eov [v,da is also a solution of the CDGSK equation. By substi-
tuting (59) into (31), we obtain a second order Lax
— (b2 + 6c3)vpe — (b1 + 302)%?,). pair (P = 6 +\p)



S.-y. Louet al. - Second Order Lax Pairs of NLPDEs with Schwarzian Forms 743

(. _ A2 — Ap1,p — 601,) second order Lax pair. In this paper we have proven
oo =—(u—6 )v
o (Ap + 6§ ' this conclusion when the Schwarzian form is an arbi-
B (Uz1) U N2 (Buthr, + 2u, e trary functional of two conformal invariants and their
= 12
Ve = ( P - P2 derivatives and integrates.
3, u? —2 Usually, the Lax operators for various integrable
T2\ P3 T Uzor — Wy 61 models (except for the KdV hierarchy) are taken as
4 32\02 — 5ipy, P (61) higher order operators. Because the order of the Lax
— 36\ ¢1T)¢ pair operators for some models has been lowered, the
2 w spectral parameter has disappeared. In order to re-
+ (36>\2uP—12 + 2y +u? — lZAz/)h?I cover some types of nontrivial spectral parameters,
" " we have to use the symmetries of the original nonlin-
— 36/\4P_i + 72232 Pl§ )pr ear equations, and then the spectral parameter(s) will

appear in the second order Lax operator in some com-

for the CDGSK model withi; being a solution plicated ways. As is known, many interesting proper-
of (31). Obviously, the Lax pair (61) is too compli-tI€S of some special models from the Lax palrswnhqut
cated for real applications. In order to eliminate spectral parameters have been successfully obtained
from (61), one has to heighten the order of the Lal¢0; 21]. For instance, in [20, 16], infinitely many
pair. Actually, the simplest Lax pairs for the CDGSKNonlocal symmetries of the KdV equation, HD equa-
equation, the KK equation and the Boussinesq equien, CDGSK equation and the KK equation have
tion are of order three [15]. Though the second ord&€en derived from the spectral parameter indepen-
Lax pairs may be useless to get exact solutions wnt Lax pairs. Th_erefore, how to obtaln some other
inverse scattering transformation for the fifth ordel!tégrable properties from the Lax pairs listed here
(and seventh order) CDGSK and KK equations, thef}‘?r general or special models is worthy of further
are still useful to find some other types of interestudy though the spectral parameters are notincluded
ing properties like the nonlocal symmetries [16] an§XPlicitly in them. _
the exact solutions related to the nonlocal symme- [N addition, The conclusion for the general (1+1)-
tries [17]. dimensional Schwarzian equations can also be ex-
In many other cases, one can not introduce nofgnded to some special types of (2+1)-dimensional
trivial spectral parameter(s) to the Lax pair (14) 4inodels, like the breaking soliton equations. However,
all. The (1+1)-dimensional Lax pairs without nonlowto exten_dthe method and the C(_)nclusu_ansto gen-
trivial spectral parameter(s) are called fake Lax pair§ral (2+1)-dimensions or to even higher dimensions
In [18], Calogero and Nucci have pointed out thaf Still open. _
any (1+1)-dimensional nonlinear equations with one 1his work was supported by the Outstanding Youth
conservation law possess fake Lax pairs. For the fak@undation and the National Natural Science Foun-
Lax pair(s), the trivial parameters can be eliminate@@tion of China (Grant. No. 19925522), the Research

by proper gauge [19]. Fund for the Doctoral Program of Higher Education
of China (Grant. No. 2000024832) and the Natural
6. Summary and Discussions Science Foundation of Zhejiang Province, China. The

authors thank for helpful discussions with Professor
In summary, every (1+1)-dimensional equatioiG.-x. Huang and Drs. S.-l. Zhang, C.-l. Chen and
which has a Schwarzian form seems to possessBawu.
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